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Abstract. In this paper, we shall study the effect of an extemal magnetic field on the magnetic 
long-range orders wmo) in the global ground states of the quanNm XY model and the isotropic 
Heisenberg model on the simple cubic lattices. We shall rigorously prove that. while an extemal 
magnetic field (staggered in the antiferromagnetic case) which favours m o  in a specific spin 
direction, say x-direction. is tumed on, it completely suppresses the MLRO in the perpendicular 
spin directions in the global ground states of these models. 

The discovery of magnetic long-range order ("3) in the superconducting layered 
perovskites [l-21 has motivated a surge of interest in the quantum antiferromagnetic 
Heisenberg model. As a model describing the magnetic properties of solids,'the existence 
of MLRO in its ground states is of most concern to physicists. Over several decades, 
people have achieved many advances in understanding this model by either approximate 
or mathematically rigorous methods. As far as  the rigorous results are concerned, Mermin 
and Wagner proved their famous theorem in 1966 [3] (it was also independently proved 
by Hohenberg [4]). Their theorem excludes the existence of MLRO in the one- and two- 
dimensional Heisenberg models when temperature T # 0. On the other hand, it was Dyson 
et al [5] who first established the existence of MLRO in the isotropic antiferromagnetic 
Heisenberg model on the three-dimensional simple cubic (sc) lattice when the localized spin 
angular momentum s > 1. This result was extended to the ground state of the Heisenberg 
model on the two-dimensional square lattice with s 2 3/2 by Neves and Perez [6]. The best 
result was obtained by Kennedy et a1 [7]. They proved that, when d 2 3 and s I/2, or, 
d = 2 and s 2 1, the ground states of the antiferromagnetic Heisenberg models on sc lattices 
have antiferromagnetic long-range order. In a very recent article [SI, we proved that, if the 
antiferromagnetic Heisenberg model is defined on a bipartite lattice A with macroscopic 
unequal numbers of sublattice points, then its ground states have both ferromagnetic and 
antiferromagnetic long-range order. Namely, the model represents a ferrimagnet proposed 
by N6el [9]. 

We notice that all these theorems were proved for Heisenberg models without external 
magnetic fields. A natural question which one would like to ask is what happens if a 
magnetic field is turned on. In general, one expects that an extemal magnetic field will 
inmduce some kind of frustration into the system and hence, suppress the MLRo in the 
ground states. To study this problem on a rigorous basis, we shall consider a special case 
in which the ground state of the antiferromagnetic model has WO in several different spin 
directions. After turning on a magnetic field (staggered,in the antifemmagnetic case) which 
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favours MLRO in a specific spin direction, we show that the MLRO in other spin directions 
are completely suppressed, no matter how weak the magnetic field is. 

For definiteness, we shall consider the quantum X Y  model on the two-dimensional 
square lattice in the following. As one will see, the final results of our analysis can be 
easily extended to some more complicated cases such as the isotropic antiferromagnetic 
Heisenberg model on sc lattices. 

Take a finite square lattice A with NA = L2 lattice points. The Hamiltonian of the 
quantum XY model can be written as 

HA = -J  si.+ +si,+) (1) 
(i i)  

where six and siy are spin-1/2 operators at lattice site i. J > 0 is a parameter and (ij) 
denotes a pair of nearest-neighbour lattice sites. With respect to this Hamiltonian, the square 
lattice is bipartite. Consequently, when the extemal magnetic field is absent, the sign of J 
does not play an important role in our analysis. In fact, one can show [lo] that the positive- 
and negative4 quantum X Y  Hamiltonians on the square lattice are unitarily equivalent. 

Define S, = CiPA sii to be the total spin z-component operator. It is easy to see that 
[HA,  S,] = 0. Therefore, S, is a good quantum number of the quantum X Y  model and the 
Hilbert space of HA can be divided into numerous subspaces. Each of these is characterized 
by a quantum number S, = M. Affleck and Lieb [ I l l  showed that, in each subspace V ( M ) ,  
HA has a unique gound state and the global p u n d  state Yo(A) of HA coincides with its 
ground state in the subspace V ( M  = 0). 

Furthermore, for the positive-J quantum XY model on the square lauice, Kennedy et a1 
[12] proved the existence of the momentum-0 transverse MLRO in its non-degenerate global 
ground state Yo(A). More precisely, they proved that if one defines 

where q is a reciprocal vector of the square lattice, then one can find a positive constant 
01 > 0, independent of NA,  such that 

( W A )  I S.!(O)~AO) I 'J'o(A)) = ('MA) I S:(O)SS(O) I W O W )  > U N A  (3) 
holds. The equals sign in (3) is due to the fact that the quantum X Y  Hamiltonian is invariant 
under rotations about the S, axis. In other words, the global ground state Y@) of HA has 
both spin x -  and y-direction MLRO. 

Now, we turn on an external magnetic field which favours the spin x-direction MLRO. 
The new Hamiltonian reads 

HA = HA + V = -J  ~ ( s s s ~ .  + ~ i , ~ j , )  - h (4) 

where h > 0 is a constant. We choose a negative magnetic field only for technical 
convenience. As a matter of fact, by applying the unitary operator U, = exp(inSz) to 
HE,, we can easily show that it is equivalent to the negative4 Hamiltonian of the same 
form. 

Introduce operators si+ = six + isi, and si- = s k  - isis. The Hamiltonian HE, can be 
rewritten as 

(i i)  i E A  

(ii) ish  

For such a Hamiltonian, we have the following theorem. 
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Theorem 1 .  The global ground state YO@) of HA is non-degenerate. Furthermore, for a 
pair of distinct lattice points k and h, wc havc 

('h(A)lsk-sh+I~o(A)) > 0 (Yo(A)l%.sd'€'o(A)) > 0. (6) 

Proof. First, we notice that the Hilbert space of Hi is no longer reducible. In other words, 
all the subspaces V ( M )  are connected by the extemal field Hamiltonian. Choose a basis of 
vectors of the Hilbert space by 

& ( s l + ) m l ( ~ Z t ) m z . .  . (SNA+)"~ Ix) (7) 

where Ix) is the state with all spins down and mi takes on values of either 0 or 1. In 
terms of this basis, Hi can be written as a matrix. Since both sit and si- are non-negative 
operators (s+l .f) = 0, $+I$) = I t), 3-1 t) = I J), s-I J) = 0) with respect to {&}, we 
find that all the non-zero matrix elements of H i  are negative. For such a matrix, we have 
the famous Perron-Frobenins theorem [13]. It tells us that the lowest eigenvalue of H i  is 
non-degenerate. Furthermore, the ground state Y&) is a linear combination of (&} with 
positive coefficients. Consequently, inequality (6) holds since si and s- are non-negative 
operators. U 

A direct corollary of theorem 1 is as follows. 

Corollary I .  Let 

t and S-(q) = St(q), where q is a reciprocal vector of the square lattice. Define 

g(q) (WoWls+(ds-(q) + s-(dS+(q)l*o(A)). (9) 

Then, the following inequality 

d o )  > g(q) (10) 

holds for any reciprocal vector q. 

Proof. By the definition of g(q) and inequality (6). we immediately obtain inequality (IO). 
0 

By corollary 1, if Y,-,(A) has a momentum-q MLRO, i.e. if g(q) 2 UNA for some 
reciprocal vector q, then Yo@) must also have a momentum-0 MLRO. Considering the 
magnetic field strengthens the momentum-0 MtRo in the spin x-direction, corollary 1 can 
be easily understood. 

We now show that, while the spin x-direction MLRO may be strengthened by the extemal 
magnetic field, the spin y-direction MLRO is completely suppressed. Our result can be 
summarized in the following theorem. 
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Theorem 2 .  
any reciprocal vector q> we have 

Let Yo(A) be the global ground state of H i  on the square lattice. Then, for 

(q0w IS$S)S, (4) wO(~) )  = ow. (11) 

Consequently, the mR0 in the spin y-direction is absent in Yo(A). 

Proof. To prove theorem 2, we shall apply a technique which we developed in a previous 
paper [14] for showing the absence of some type of long-range orderings in a strongly- 
correlated many-body system. 

First, we notice that the Hamiltonian H i  on the square lattice enjoys the so-called 
reflection positivity [5,7]. Consequently, by following the proof of the main theorem in [6] 
step by step, we can show that there is a positive function f(q) which is of order 0(1) for 
any p # 0 as N A  + CO, such that 

0 6 g ( d  < f(4). (12) 

Therefore, YO@) can have, at most, a momentum-0 MLRO. On the other hand, by the 
definitions of si+ and si-, g(q) can be written as 

g ( d  = z{(Yoo(A)ls~(p)s,(p)lYo(A)) + (Yo(A)lSt(p)sy(p)lYo(A))). (13) 

Therefore, (Yo(A)~S:(~)S,(~)~YO(A)) 2 ,9NA (,9 is a positive constant independent of 
NA) may only hold at q = 0 since (Yo(A)lS!(q)S,(q)lYo(A)) is a positive quantity. 
Consequently, if (YO(A)~S~(O)S,(O)IYO(A)) is of order O(1) as N A  + CO, then the spin y- 
direction MLRO is completely suppressed. We now prove this fact by the method developed 
in [14]. 

Consider the commutator of Hi and S, = xi,,, siz. 
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In the above derivation, we used the Cauchy inequality. Obviously, each of the expectation 
values in the last line of inequality (17) is, at most, a quantity of order O(NA) .  Therefore, 
(Yo(A)ISy(0)Sy(O)IY~(A)) is bounded above by a quantity of order O(1). It implies that 

0 

Although we have only proved our theorem for the quantum X Y  model on the square 
lattice, it is not difficult to see that the proof can be easily extended to the isotopic 
antiferromagnetic Heisenberg model on sc lattices. ’ In this case, we should replace 
V = h C j e n s j ,  with V‘ = h x .  (-ly@jsjz, (Q (x, x, . . . , x)) which favours the >EA 
longitudinal MLRO of the isotropic antiferromagnetic Heisenberg model [5 ] .  By repeating 
the proof of theorem 2, we find that the transverse MLRO in the global ground state Yo(A) 
of the Heisenberg Hamiltonian is completely suppressed. 

In summary, we have studied in this paper the effect of an external magnetic field 
on the existence of-the MLRO in the antiferromagnetic X Y  and Heisenberg model on SC 
lattices. We find that, turning on a magnetic field, which may favour MLRO in a specific 
spin direction, totally destroys the m R 0  of the system in the perpendicular spin directions. 

the global ground stafe Yo(A) of Hi has no spin y-direction MLRO. 
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